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CHAPTER 1: INTRODUCTION 
1.1.Overview 
Traffic calming has its origins in the Dutch “Woonerf” schemes of the 1970’s, and since then has 
been further expanded and spread throughout the northern Europe, but especially in Netherlands 
[1].However, it is still relatively new to many areas of Tennessee and the United States and it is 
not implemented to the extent of Europe. Traffic calming measures (TCM) are used for the purpose 
of reducing speed and regulating traffic volume to acceptable levels. These measures can have 
positive or negative traffic flow and safety impact to the community which is worth evaluating. If 
not properly implemented, traffic calming can lead to delays, traffic accidents, lower travel speed 
and overall dissatisfaction to the community. Traffic calming techniques can be grouped into two 
categories (1) non-physical measures such as educational programs and (2) physical measures 
which are of three types: horizontal measures which use forces of lateral acceleration to discourage 
speeding; vertical measures which use forces of vertical acceleration to discourage speed such as 
speed humps, speed tables etc. and narrowing which use a psycho-perceptive sense enclosure to 
discourage speeding. This study focused on simulating calming features that physically impact the 
drivers’ speeds including (1) speed humps (2) speed tables and (3) raised crosswalks 

Traffic calming is not only a transportation element to most communities but can be an enhancer 
of the safety of drivers and pedestrians, enhancing livability, improving air quality, change social 
behaviors and promote walkability, it is a great way of creating a sustainable city. The goal of this 
study is therefore to assess traffic calming programs through microsimulation in the context of 
urban transport system functioning with respect to the impact on modal split, routing decisions and 
in result, on observable traffic flows. As a result, this will help to properly represent the impact of 
engineering measures and the examination of speeds and travel times alterations for each type of 
measure are essential for livable communities. 

1.2.Scope 
To achieve primary aim of the study several primary tasks were involved: comprehensive literature 
search was undertaken to uncover published and unpublished reports and papers on Traffic 
Calming Schemes, programs and simulation. Selection of Study Segments, several roadway 
segments with known traffic calming in Metro Nashville area have been selected for the study. 
Traffic Calming Microsimulation which involves defining, simulating and evaluating the Impacts 
of Traffic Calming measures including raised Median Island, traffic circle, speed hump, raised 
crosswalk, crosswalk refuge etc. VISSIM software was used for simulation. Traffic Calming 
Sensitivity Analysis in which the impact of varying Traffic Calming were analyzed through 
simulation. The operational impacts from sensitivity analysis were documented and graphically 
plotted for comparison purposes. 

1 



  

 
 

 
  

   
           

      
     

      
         

        
          

        
  

  
  

             
        

      
           

        
  

          
 

    
  
   
  

 
  

 

   
  

   
        

       
   

 
  
   
  

CHAPTER 2: LITERATURE REVIEW 
2.1 Introduction 
Institute of Transportation Engineers (ITE) and Federal Highway Administration (FHWA) jointly 
published a report in 1999 [2] which defines traffic calming as the process which involves changes 
in street alignment, installation of barriers, and other physical measures to reduce traffic speeds 
and cut-through volumes in the interest of street safety, livability, and other public purposes. 
Effectiveness of traffic calming can be defined by reduction in the mean speeds; reduction in the 
85th percentile speeds; reduction in the highest speeds. These reductions of speeds can lead to 
reduction in the number of complaints and inquiries in such a way that residents feel safer and 
there is an active response to public request. This effectiveness of Traffic calming measures can 
be judged by impacts of speed and traffic volumes. Based on Traffic Calming: State of Practice 
(1999), by Reid [2], speed impacts of traffic calming measures depend primarily on: 

• Geometrics: Determines the speed at which the motorists travel through slow points 
• Spacing: Determines the extent to which motorist speed up between slow points 

These are two types of traffic calming policy that will be dealt in this study [3]: Black-spots 
approach (described as level 1/ level2) and area-wide approaches (described as level 3).Black-spot 
approach contributes to the reduction of vehicles speeds while Area-wide approach can lead to 
both reduction of speeds as well as volumes [3].There are numerous studies on “before” and “after” 
data of impacts on accident reduction. However, one should emphasize that analyses should be 
done in a greater scale to find the real impact of area-wide solutions [4] 

The review of literature was done on both national and local basis. The literature review focused 
on “before” and “after” data for: 

• 85th percentile speeds 
• Average speeds 
• Traffic volumes 
• Traffic crashes 

2.2 Traffic calming techniques 
Traffic calming techniques can be grouped into two categories: 

• Non- physical measures such as educational programs and enhanced enforcement. 
• Physical measures such as speed humps, speed tables etc. 

2.2.1 Non- physical measures 
Education and enforcement: educating citizens and vehicle drivers about the impacts of traffic 
calming measures. In some places, education is used as a prerequisite before installing any device. 
This education is being given in different forms include: 
Workshop include school programs, public outreach etc. 

• Radar speed monitoring trailer, which display vehicles as they pass 
• Speed feedback signs 
• Enforcement by the police (traditional) 

2 



  

 
 

  
         

    
 

       
 

  
  
  
  
  
  
        

       
 

      
 

          
      

 
       

 
 

  
        

           
        

   
  
  
  
  
  

  
  
  

        
       

      
     

        
         

      
   

 
 

2.2.2 Physical measures 
Physical driving techniques refer to the combination of measures that reduce the negative effects 
of motor vehicles use, alter driver behavior and improve conditions for both motorized and non-
motorized users. 
Traffic calming is very important especially in residential neighborhoods and small commercial 
centers. Traffic calming tools can be grouped in the following categories: 

• Bumps, humps, and other raised pavement areas. 
• Reducing street area 
• Street closures 
• Traffic diversions 
• Surface textures and visual devices 
• Parking treatments 

Most often combinations of traffic calming techniques are used in road networks. Below is a brief 
description for some of onsite calming devices for reducing Speeds as were provided in FHWA 
[5]. 
Speed Hump: These are rounded raised area across roadway, typically 12 to14 feet in length and 
3 to 4 inches high. 
Speed Cushion: These are devices are typically 6 to 7 feet wide that allow most emergency 
vehicles to straddle the hump. They are more advantageous compared to speed hump when 
accommodating emergency vehicles. 
Speed Table: A long hump typically 22 feet length with a flat section in the middle and ramps on 
the ends. Speed tables can be placed both in rural and urban areas. 

2.3 National literature review 
Traffic calming studies have been studied in different places in USA to check the effective 
processes used to plan and define a local traffic calming project as well as assessments of the 
effects of the individual and series of traffic calming measures. The following is a brief summary 
provided for various case studies done in USA [6]. 

• City of Wauwatosa(Wisconsin) Traffic calming study case 
• City of Sunnyvale (California) Canary Traffic calming Case Study 
• Portland (Maine) Traffic Calming Study-Massachusetts Avenue Neighborhood 
• New York Neighborhood Slow Zone Program 
• Seattle Safe Routes to School Program 

Useful information concerning traffic calming devices was found on two significant resources: 
• The federal highway Administration (FHWA) 
• ITE 

The literature search was also conducted on a comprehensive report prepared by Institute of 
Transportation Engineers (ITE) and published by the FHWA entitled Traffic Calming State of the 
Practice (SOP) [2], through which 20 communities were incorporated and selected on basis of 
broad objectives number and types of traffic calming measures, interesting institutional issues and 
availability of performance data. Therefore, the report is a very conclusive document that 
thoroughly reviews all aspects of traffic calming from a national perspective. Some of the 
municipalities in the plan include: Anchorage in Alaska, Temple in Arizona, San Jose in 
California, etc. Table 2.1 shows some data on the effectiveness of traffic calming devices. 

3 



  

 
 

     

  
 

 
 

 

 
 
 

 

 
 

 

 

 

       
       
       

      
      

      
      

       
      

  
 

  
     

 
  

  
 

 
 

     
     
     

    
    

    
    
    

    
   

 
    

    

    
 

     
      

     
        

       
   

   
  

Table 0.1: Traffic Calming Devices Impacts on Speed 

Device Sample 
size 

85th Percentile 
Before Speed 

(mph) 

85th 
Percentile 

After Speed 
(mph) 

Average change 
in Speed 

(mph) 

Average 
Percent 
Change 

12- foot Humps 179 35 27.4 -7.6 -22% 
14- foot Humps 15 33.3 25.6 -7.7 -23% 
22- foot Tables 58 36.7 30.1 -6.6 -18% 
Longer Tables 10 34.8 31.6 -3.2 9% 
Raised Intersections 3 34.6 34.3 -0.3 1% 
Circles 45 34.2 30.3 -3.9 -11% 
Narrowing 7 34.9 32.3 -2.6 4% 
One-Lane Slow Points 5 33.4 28.6 -48 -14% 
Diagonal Diverters 7 29.3 27.9 -1.4 -4% 

Source: FFWA/ITE: Traffic Calming: State of Practice [2] 

Table 0.2: Traffic Calming Devices Impacts on Traffic Volumes 
Device Sample size Average Change in Average Percentage 

Volume Change in Volume 
(Vehicles per Day) (vehicles per Day) 

12- foot Humps 143 -355 -18% 
14- foot Humps 15 -529 -22% 
22- foot Tables 46 -415 -12% 
Circles 49 -293 -5% 
Narrowing 11 -263 -10% 
One-Lane Slow Points 5 -392 -20% 
Full Closures 19 -671 -44% 
Half Closures 53 -1611 -42% 
Diagonal Diverters 27 -501 -35% 

Source: FFWA/ITE: Traffic Calming: State of Practice [2] 

Table 0.3: Traffic Calming Devices Impacts on Collisions 
Device Number of Sites Average Annual Collisions(A) 

Before Calming After Calming Percentage 
Change 

12-foot Humps 50 2.62 2.29 -13% 
14- foot Humps 5 4.36 2.62 -40% 
22-foot Tables 8 6.71 3.66 -45% 
Circles (without Seattle data) (A) 17 5.89 4.24 -28% 
Circles (with Seattle data) (B) 130 2.19 064 -71% 

Source: FFWA/ITE: Traffic Calming: State of Practice [2]
(A) Average annual number of collisions typically based upon a 12-month data collection period. 
(B) Intersection collisions only. 
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From the FHWA/ITE manual it can be derived that the impacts of traffic calming devices are 
highly case-specific, depending on: 

• Geometrics and spacing of measures 
• Availability of alternative facilities 
• Treatment of other facilities in area wide applications etc. 

The FWHA/ITE report [2] further shows the impacts on traffic volumes are even more case 
specific than speed. Impacts on traffic volumes depend on the network of streets in the area, rather 
than the characteristics of the specific street itself. The availability of alternative routes and the 
application of other measures in area wide schemes may have as large an impact on volumes as do 
the geometrics and spacing of traffic calming measures. Moreover, the report suggested that it is 
difficult to draw conclusive results from traffic calming accident analyses because most safety 
studies do not account the influence of potential changes in accident reporting, weather conditions 
and traffic diversions. 

2.4 Local literature review 
In addition to conducting a review of national literature on traffic calming, an attempt was made 
to gather empirical results before and after studies in Nashville. Two reports were reviewed, 
namely Hillwood Neighborhood Traffic Calming Project- Follow up Study (2012) published by 
LLC and Metro Traffic Calming Study Phase 2 report which was prepared for Metropolitan 
Government of Nashville and Davidson County Department of Public Works in 2004, provided 
insight on local attempts at traffic calming. The purpose of follow-up study report was to evaluate 
the effectiveness of the implemented traffic calming plan after the measures have been in place for 
approximately 6 months. The report based on four major streets in the Hillwood Neighborhood 
where majority of the traffic calming measures were implemented also the speed and volume data 
for “before” conditions were available. These streets include Bresslyn Road, Brook Hollow Road, 
Hillwood Boulevard and Davidson Road. Table 2.4 to 2.7 lists local results from “Hillwood 
Neighborhood Traffic Calming Project- Follow up Study” [7]. 

The traffic calming devices presented in the literature review did reduce vehicle speeds and traffic 
crashes in the Hillwood neighborhood while volume data showed a fluctuation in daily traffic 
volume through the neighborhood over the last few years; however, this fluctuation does not 
indicate any significant changes in travel plans that could be attributed to the traffic calming 
devices. From table 2.5, the speed data comparison indicates that the 85th -percentile speeds were 
reduced in all four streets in both directions therefore the plan was successful in lowering the 
vehicular speeds on the residential streets. From table 2.6 the “before and after” comparison shows 
some fluctuation in traffic volume along the four streets in the Hillwood neighborhood. As shown 
in Table 2.7, fewer crushes occurred since the traffic calming devices were implemented than 
occurred 12 months before, however this is not enough to make comparisons of the “before” and 
“after” conditions because this study was done 6.5 months after placement of traffic calming 
devices therefore additional time and study is needed to support data-supported documentation of 
the safety impacts. As the primary objective of traffic calming is reduction of vehicular speeds, 
then based on the analysis of the data, it was concluded that Hillwood Neighborhood traffic 
calming plan was successful due to significant increase in the awareness of drivers to the 
neighborhood which has led to significant reduction in vehicular speeds. 

5 



  

 
 

  

    
   

  
  

  
   

  
  

   
  

   
  

  
  

   
  

  
  

  
     

 

 

   

     
    

 
 

     
     

 
 

 

     

     

 
 

 
 

     

     

       
     

    

 

Table 0.4: Neighborhood Traffic Calming Treatment by Street 

Street Traffic Calming Device/Technique Count 
Bresslyn Road Choker/Chicane 2 pair 

Speed limit in pavement marking (30mph) 6 
Custom neighborhood traffic calming Sign 2 
All-way stop 1 

Brook Hollow Road Radar speed sign 2 
speed limit pavement marking(30mph) 3 
Speed limit signs 2 
Custom Neighborhood Traffic Calming Sign 2 
All-way stop 1 

Hillwood Boulevard Radar speed sign 1 
speed limit pavement marking(30mph) 3 
Custom neighborhood traffic calming Sign 3 
Change Yield Control to Stop Control 1 

Davidson Road Radar Speed Sign 2 
Custom Neighborhood Traffic Calming Sign 2 
All-way Stop 1 
speed limit pavement marking(30mph) 4 
Speed Limit Signs 8 

Source: Hillwood Neighborhood Traffic Calming Project- Follow up Study report [7] page 1 

Table 0.5: Speed “Before & After” Comparison 

Street 

Bresslyn Road 

Traffic Calming Measure 

Chicane/choker & Speed 
Limit Markings 

Direction 

Northbound 
Southbound 

85th Percentile Speed (mph) 
Before After Difference % Change 
44 39 -5 -11.4% 
43 38 -5 -11.6% 

Brook Hollow 
Road 

Radar Signs & Speed 
Limit Markings & Stop 
Signs 

Northbound 

Southbound 

43 

42 

36 

37 

-7 

-5 

-16.3% 

-11.9% 

Hillwood 
Boulevard 

Radar Sign & Speed Limit 
Markings 

Eastbound 

Westbound 

40 

39 

37 

38 

-3 

-1 

-7.5% 

-2.6% 

Davidson Road Radar Signs & Stop Signs Eastbound 
Westbound 

39 
40 

38 
38 

-1 
-2 

-2.6% 
-5.0% 

Source: Hillwood Neighborhood Traffic Calming Project- Follow up Study report [7] page 2 
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Table 0.6: Volume “Before & After” Comparison 

Street Traffic Calming Measure Direction ADT Volume(vpd) 
Before After Difference % Change 

Bresslyn Road Chicane/choker & Speed Northbound 313 470 157 50.2% 
Limit Markings Southbound 315 408 103 33.8% 

Total 618 878 260 42.1% 
Brook Hollow Radar Signs & Speed Limit Northbound 1334 1353 19 1.4% 
Road Markings & Stop Signs 

Southbound 1611 1467 -144 -8.9% 
Total 2945 2820 -125 -4.2 

Hillwood Radar Sign & Speed Limit Eastbound 2090 2253 163 7.8% 
Boulevard Markings Westbound 2095 2309 214 10.2% 

Total 4185 4562 377 9.0% 
Davidson Road Radar Signs & Stop Signs Eastbound 2669 2240 -429 -16.1% 

Westbound 2884 2061 -823 -28.5% 
Total 5553 5553 -1252 -22.5% 

Source: Hillwood Neighborhood Traffic Calming Project- Follow up Study report [7] page 4. 

Table 2.7: Crashes Before & After” Comparison 

Street Segment Number of Crashes 
before after difference % Change 

Bresslyn Road B/w Old Charlotte Pike & Davidson 1 1 0 0% 
Road 

Brook Hollow Road B/w Charlotte Pike & Davidson Road 5 1 -4 -80% 
Hillwood Boulevard B/w Charlotte Pike & Wilsonian 10 7 -3 -30% 

Avenue 
Davidson Road B/w Brook Hollow Pike & Harding 12 7 -5 -41.6% 

Pike 
Notes: 

1. Available “before” crash data included in 12 months of data. Available “after” crash data included 6.5 months of data. 
2. It should be noted that one crash is counted for both Davidson Road and Bresslyn Road for the “after” condition since it 

occurred at the intersection of these two roads. Similarly, one crash is counted for both Brook Hollow Road and Bresslyn 
Road in the “before” condition since it occurred at the intersection of two roads. Two crashes are counted for both 
Davidson Road and Brook Hollow Road for the “before” condition since they occurred at the intersection of these two 
roads. 

Source: Hillwood Neighborhood Traffic Calming Project- Follow up Study report [7] page 4. 

2.5 Findings from Other studies 
Aburahmah & Assar [8] evaluated if the installation of a physical measure such as a speed hump 
significantly reduces speed and traffic volumes. The paper describes the effects of different 
calming strategies on the traffic parameters such as volume, speed, and traffic safety. The 
installation of speed humps as a traffic calming measure proved to be effective at study locations. 
Similar study was conducted by Lee et al [9] in which they evaluated the effectiveness of various 
traffic calming measures from traffic performance and safety perceptive, and environmental and 
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public health impacts. Four calming measures were used to demonstrate its usefulness and 
applicability which were two types of speed humps, speed tables, and chicanes. Chicane was found 
to be better than other types of traffic calming measures considered, except in terms of vehicle 
emissions. They have resulted in a reduced effect on speed variation prior to the arrival to the SC 
compared to the humps. On another research, Petersen [10] found that the psychological traffic 
calming measures such as converging markings and lane narrowing had the least effectiveness, 
while the physical measures such as speed table and longitudinal channelizers had much more 
success in reducing speeds. Wei et al [11] found that when these calming measures are combined 
with other features like as a crest and a gentle bend they become more effective. 

On the whole, there is abundant literature research exploring the impact that can result into 
installing various types of traffic calming measures [12] [13] [14] [15]. Most of these past studies 
conducted field experiments to examine traffic calming measures which were time consuming and 
expensive [16] [17].The time and data gathering constraints have led to the use of traffic simulation 
as an alternative approach to evaluate the operation of traffic calming features. Different 
simulation models which can be used to simulate the impact of traffic calming measures include: 
driving simulators and microsimulation models such as VISSIM and PARAMICS. The 
microsimulation models have been used to assess the impacts of various traffic calming measures 
with respect to driving behavior on isolated or area-wide traffic calming schemes. Through traffic 
simulation models, one can evaluate alternative calming treatments, test new designs, and conduct 
safety analysis with different calming features [18] [19] [20] .For instance, one study carried a 
three series of simulations to assess the impacts of road safety and level of service using VISSIM 
on a 1500m road link [21].The simulation reflected real field situation and found that the presence 
of humps caused travel time to increase and level of service to be reduced. In another research, 
Nair et al [22] found that the installation of speed breakers had no significant effect in reduction 
of accidents. 

The use of driving simulators in assessing the impact of traffic calming measures has been 
highlighted in the past literatures [23] [24]. By using driving simulators, driving parameters, 
drivers’ behaviors and infrastructural impacts can be examined under controlled environmental 
and traffic conditions without any disturbing factors. Some of advantages of driving simulators 
mentioned by [25] include: efficiency, low cost, efficiency, safety of the experiment, full control 
over all conditions, easy to collect data, and a proper verification of simulator’s functioning in 
comparison with the field studies. 
However, there are no abundant studies conducted to simulate the impact of traffic calming 
measures using VISSIM microsimulation. 

2.6 Micro Simulation Models 
Micro-simulation-based traffic models are becoming increasingly popular for the development and 
evaluation of a broad range of road of traffic management and control proposals in recent years 
[26]. Nowadays, many highway transportations micro-simulation software such as CORSIM, 
PARAMICS, VISSIM, AIMSUM, and among others have been made available on the market and 
are used as tools for the evaluation of traffic management and control. Due to their ability to 
simulate the behavior of individual vehicles within a predefined network, they allow traffic 
engineers and planners to assess the performance of existing roadway systems in a detailed manner 
as well as to predict the effects of operational or infrastructure changes [27]. Various elements of 
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traffic calming such as street closures, one-way streets, road diets etc. can be represented in 
microsimulation models. Also, restrictions such as intersection diverters and median barriers 
which naturally impact on the volume control can easily be modelled. As the purpose of 
microsimulation modelling is to produce traffic conditions as realistically as possible [28], 
thereupon, many transportation researchers have utilized microscopic traffic simulation tools to 
model performance of facilities in the state [28] [29]. 

This chapter is focused on PTV VISSIM, the software used in this study to perform the simulation. 
VISSIM is a microscopic time step and behavior-based simulation model. It was released in 1992, 
a microscopic simulation model and a component of the PTV vision suit developed in Germany 
[30]. VISSIM explicitly simulates the behavior of individual vehicles and their interactions [21]. 
It is the most powerful tool available for simulating multi-modal traffic flows, including cars, 
trucks, buses, heavy rail, trams, LRT, bicyclists and pedestrians [31]. It can also interface with a 
number of transportation engineering and planning profession programs. Due to its flexibility in 
network structure it gives the user the confidence to know they can model any type of geometric 
configuration or unique operation/ driver behavior encountered within the transportation system. 
Despite the advances in computing power and the ability of available simulation tools to represent 
complex driver behavior, simulation modelling and analysis requires extensive field data for 
validation-calibration [27]. Model verification, calibration, and validation are very important steps 
to ensure reliable information is gathered from the model. Various parameters that can be 
calibrated in VISSIM are acceleration, desired speed, emergency stopping distance, waiting time 
before diffusion and other Wiedemann parameter [31].In this study, desired speed is an important 
parameter that has a significant influence on achievable travel speeds, roadway capacity and travel 
time at the traffic calmed network. Therefore, the desired speed in VISSIM was calibrated and 
validated. 

The quality of traffic flow model, which describes the movement of vehicles in the network, is 
important for the quality of simulation itself. Instead of using simpler model which make 
assumption of a constant speed and a deterministic process of vehicle arrival, the model of 
Wiedemann was used. This model is known for its extensive use in the VISSIM microscopic multi-
modal traffic flow simulation software [32].The micro simulation can be used to obtain the 
distribution of speed and distance between the vehicles for various traffic volumes with and 
without installation of traffic calming devices 

2.7 Impact on Capacity 
Highway Capacity Manual (HCM) defines capacity as the maximum flow rate which can 
reasonably be expected to traverse a point or a uniform segment of a lane during a specified time 
interval under prevailing roadway, traffic, and control conditions [33]. While there is a plenty of 
literature with traffic calming themes, very few have focused on the impact of calming features to 
residential roads capacity. For instance, Garcia et al. [34]studied the evaluation of effects of the 
type and spacing of traffic calming features on capacity using microsimulation software .The 
capacity of road section varied between 810 and 1300 vehicles per hour per lane (vphpl) with 
traffic calming features placed at varying spacing from 25 to 400m. Another study found that 
TCMs have a direct effect on network capacity and changing in the number and location of 
measures can change network capacity [35]. García et al [34] used average delay to determine 
capacity of an existing traffic flow from which average delay increased exponentially. The 
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interesting part of this study was the estimation of the capacities factoring the presence of calming 
features. In another study, multi- regime model with different state equations was developed by 
May and Keller [36] for investigating relationships between macroscopic and microscopic flow 
models (car-following models). In this paper, the Wiedemann 1974 driving model for urban 
(motorized) roads was used as capacity is not defined as the single highest flow level ever expected 
to occur on a facility. Rather it is a value that represents a flow level that can be reasonably 
achieved repeatedly at a given location and at similar locations [37].Therefore, capacity in VISSIM 
is estimated by considering the car following algorithm which deal with individual space and speed 
of vehicles tending to maintain elements of headways and safety distance. The models were used 
because they provided the best fit (R2) in comparison to other fits such as Greenshields [38], 
Greenberg [39], Drew model (18), Underwood model [40] and the Drake et al. model [41]. 

In evaluating the traffic calming features, the best fit for speed-density curve is secured, and then 
steady state equations are employed to derive flows which are subsequently used to yield the 
speed-flow diagrams. These flow diagrams are macroscopic traffic model used to predict the 
capacity. Specifically, in this study the speed-flow curves generated were used to predict precise 
capacity influenced by the type of calming features on residential roadways. Earlier studies showed 
that the estimated capacity is sensitive to two the parameters; additive component of safety 
distance and multiplicative element of safety distance [42]. Therefore, these parameters need to be 
calibrated to better replicate field traffic flow behavior. In this study, a capacity estimation 
approach which uses speed-density and speed-flow relationships in the microsimulation is 
presented. The study evaluated through microsimulation the impact of different traffic calming to 
the traffic flow characteristics along selected roadway segments in Nashville, Tennessee. VISSIM 
speed reduction zones were used to model traffic calming effects copying from Lee et al. [43] who 
also considered alternative way of representing traffic calming using a function called “reduced 
speed areas” in VISSIM 
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CHAPTER 3: METHODOLOGY 
3.1 Research Area 
The main research focused on Oakhill Valley Lane road which is a two-lane residential street 
located in Nashville, Tennessee, Figure 3.1. The study investigated speed humps, speed tables and 
raised crosswalks. The calming devices in this area have been implemented to reduce the effects 
of speeding and cut-through traffic in the residential neighborhood for which has led to safety 
increase to the community living in the residence. As major roadways and intersections in 
Nashville become more congested, there is a tendency of impatient drivers to use residential streets 
for trespassing in order to avoid congestion. All streets used in this study were local residential 
streets and they do not experience large traffic volume during the day. Free-flow speeds conditions 
exist throughout during the day. Therefore, GPS are appropriate devices used to collect spot speed 
data. In the selected residential road the following features were found (1) Intersections regulated 
by a stop sign (2) Normal crosswalk and raised crosswalk (3) Speed limits signs: 30 mph and 15 
mph in the vicinity of calming devices (4) Speed tables and speed humps (5) A Gate to regulate 
trespassing vehicles after hours (6) Off street parking. 

Figure 0.1: Oakhill Valley Lane Road (Google) 

3.2 Data collection 
Before the actual traffic data collection, preliminary studies and pilot testing were conducted 
through the use of internet and site reconnaissance. Basic information such as location and name 
of a roadway segment, geometry of the road (dimensions, types and location of calming devices), 
and environment were found. Also, several trial runs were conducted to confirm whether the 
working devices such GPS work efficiently and determine their accompanied challenges. 
Field data collections fell into two main types and include the following: 

• Traffic Volume Counts 
• Speed data collection 

3.2.1 Traffic Count 
The Miovision Scout unit [44] was used to measure traffic flow per lane. The Miovision Scout 
unit is a traffic-counting device with video recording attributes that count and classify traffic per 
lane. This camera system was mounted on a stand with its top camera directed toward one direction 
of traffic, fixed at sidewalk rails, looking down on traffic. The camera was set up to record vehicles 
in all lanes, moving in both directions. Figure 3.2 shows the Miovision Scout system and its stand 

11 



  

 
 

       
 

 

 
   

  
       

       
      
       

      
        

        
         

      
         

           
         

         
        
         

        
     

   
      

       
      

    
 

 

[44]. Data were collected for 12 hours period during weekdays between 7 am and 6 pm. Data were 
extracted and screened for analysis and VISSIM simulation. 
. 

Figure 0.2: Miovision Scout (Traffic Counting Feature) 

3.2.2 GPS Data 
A portable Wide Area Augmentation System (WAAS/EGMPS) enabled USB GPS Receiver was 
used to collect second-by-second vehicle trajectories along the road segment [45].The GPS 
provides positional horizontal accuracy up to 5 meters 3D RMS, velocity accuracy of 0.1m/sec 
and time accuracy of 1 micro-second synchronized to GPS time. Figure 3.3 illustrates a diagram 
of speed profiles provided by a GPS receiver before and after passing the calming features along 
the study segment. As shown in Figure 3.3, vehicle speeds were influenced by the presence of 
traffic calming features and 40 speed profiles were collected from test vehicles. GPS feature used 
on a test vehicle recorded vehicle position (latitude and longitude coordinates) and speeds at a 
specified 1 second intervals. GPS determined test vehicle position and speed using signals from 
earth-orbiting satellites. The GPS data collection was conducted on weekdays (at the same time 
the volume data were collected). Ten different drivers without prior knowledge about the 
objectives of the study drove the test vehicles embedded with the GPS in which each driver made 
a complete round trip providing a total of 40 trips. Free flow speed conditions were used to ensure 
that the impacts on test vehicles speed were influenced only by presence of calming features. The 
GPS data were screened whereby 10 runs from GPS equipped test vehicles were removed 
(debugged) from analysis due to non-free flow conditions, presence of stopping vehicles due to 
interactions with pedestrians and poor signals from satellites, which resulted to abnormal speeds, 
accelerations or decelerations. Therefore, only 30 simulation runs were retained for further 
analysis and evaluation in VISSIM. Figure 3 shows four speed profiles along the study segment 
that include three speed humps adjacent to each other. Only speed hump 2 was used to characterize 
the behaviors of drivers when crossing speed humps. The driving patterns of speed hump 1 were 
discarded as they were influenced with closeness of nearby crossing street. Speed hump 3 was 
discarded because it was located at a very close distance to speed hump 
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     Figure 0.3 : GPS Speed profiles Samples from Oak Hill Valley Lane Study Segment 
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3.3 Speed Analysis 

Speed percentiles were used to determine effective speed distribution for desired speeds of vehicles 
in VISSIM. Desired speed is defined as the speed the driver would choose in absence of any 
restrictions imposed by other vehicles or by traffic control devices. A frequency distribution table 
was used to determine speed percentiles. 50th and 85th percentiles are the two most common 
percentiles, but in this study seven percentiles were defined to accurately match simulated and 
observed speed at the approach and exit of the traffic calming devices. The minimum, 7th, 15th, 
50th, 85th, 95th and max percentile speeds were used to assign percentiles from field as input in the 
desired speed distributions [34]. The 50th percentile is the average speed of drivers in the traffic 
stream while 85th percentile is the speed at which 85 percent or below of drivers drive at [46] .The 
following formula was used to calculate respective percentiles: 

= 
$"%$&'( !" $&)*%$&'(

(!&)* − !&'() + !&'( 

Where: SD = speed at PD, PD = percentile desired, Pmax = higher cumulative percent, Pmin = lower 
cumulative percent, Smax = higher speed, and Smin = lower speed. 

The cumulative speed distribution curves from data collection in field were plotted and inputted 
manually in VISSIM to match the desired speeds at reduced areas. Table 9 and 10 and their 
respective figures 3.4 and 3.5 show the percentiles of speeds at the two speed tables (table 3.1 and 
table 3.2). 

Table 0.1: Percentiles of speeds at reduction area (first speed table) 

Percentiles 1 7 15 50 85 95 100 

Speed(mph) 7.78 8.89 9.98 13.27 20.78 25.03 25.92 

Figure 0.4 desired speed distribution for vehicles at the first speed table 
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Table 0.2 Percentiles of speeds at reduction area (second speed table) 
Percentiles 1.00 7.00 15.00 50.00 85.00 95.00 100.00 

Speed(mph) 9.81 9.82 9.93 14.20 21.02 24.84 25.25 

Figure 0.5 desired speed distribution for vehicles at the second speed table 

3.4 Microsimulation 

Microsimulation software VISSIM developed by PTV was used to replicate individual vehicle 
movements on a second-by-second basic to assess traffic performance due to presence of calming 
devices on roadways [30]. Vehicle classes, road geometry, hourly volume and aggressiveness of 
drivers were defined to represent the driving behavior when cross the calming features. To mimic 
the variability of drivers in the field, the microscopic model was run in multiple times for the 
roadway segments and the analysis section developed. Due to the variability of drivers’ 
characteristics, minimum numbers of runs were computed at 95 per cent confidence level to 
represent the desirable traffic conditions in the field [47]. 

The following were the procedures taken to develop a base VISSIM model: 

1. Network development: this included creating background images using a scaled google map 
and link modelling. The following is a detailed explanation on how they were done in VISSIM: 
• Creating Background images. VISSIM software allows user to insert true to scale digital 

maps as a background image for a detailed VISSIM network model as graphic files. 
Therefore, images were taken (screenshot) from a google map and saved as *.png graphic 

15 



  

 
 

        
   

      
      

      
   

 

  
       

   
        

 
      

    
  

     
       

        
     

  
  

  
       

      
           
         

         
  

  
          

         
  

  
      

      
 

  
         

        
         

 
 

  

    
             

file format. Using the background image toolbar from the network objects, the images were 
loaded, scaled and arranged in the Network Editor [30] 

• Modelling of links. Links were modelled based on the geometry of the road network as 
shown from the background images inserted. Length of the link is defined based on the 
scaled background images; link behavior type is set to Urban (motorized). Links were 
connected using connectors. With connector window, both change distance per lane and 
emergency stop distance were set. 

2. Provision of traffic controls 
There was a need to assign desired speed decisions on links and connectors based on the desired 
speed distribution for controlling the vehicle’s approach speed and lastly define reduced speed 
areas with its appropriate desired speed. The following is a detailed explanation on how they were 
conducted in VISSIM. 

• Assigning desired speed decisions on links and connectors. After modeling links the next 
step was to assign desired speed decisions on links and connectors using desired speed 
distribution defined based on vehicle classes [30]. 

• Defining reduced speed areas. Reduced speed areas are assigned to the link or connectors 
to modify the assigned desired speed. This is a useful network object, especially for the left 
and right turning vehicles at the intersection. Reduced speed areas can be defined, and the 
desired speed can be assigned based on vehicle class in interest. In the reduced speed area, 
speed assigned can be higher than the desired speed and vice versa [30]. 

• 
3. Modeling vehicle routes and routing decisions 
In VISSIM vehicular traffic can be modeled by assigning either static routes partial route, Partial 
PT, Parking lot, or Managed lanes which define the routing decisions and therefore specify the 
paths which the vehicles travel in the network [31]. In this study only, static route was used to 
define the routing decisions from a routing decision point “From Section with a default color 
Purple” to its end at a so called “To Section with a default color Turquoise”. These static routes 
were defined to route vehicles using a static percentage for each destination [30]. 
4. Modeling vehicle compositions 
Based on the traffic counting data collected, vehicle compositions from the vehicle type for all 
approaches at the intersection and road segments were calculated and assigned in the model so that 
the vehicle can be generated accordingly [30]. 
5. Modeling Driving behavior 
In modeling the driving behavior, the VISSIM software uses two Wiedemann car-following 
models: Wiedemann 74 for arterials and Wiedemann 99 for freeways. As the scope of this study 
covers only the arterial roads, Wiedemann 74 car-following model was used. 
6. Defining vehicle inputs 
Another step in developing the base model was to insert the vehicle volumes based on the field 
traffic counting data collected. Vehicle inputs control the number of vehicles which are fed into 
the VISSIM network developed. Each vehicle input was defined by time intervals and the 
corresponding vehicle composition was selected. 

3.5 Modelling reduced speed areas: 

In order to model traffic calming features in VISSIM, speed reduced areas and desired speed 
decisions were used, see figure 3.6 below. These areas make vehicles decelerate at a constant (user 
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defined) rate and at a desired speed just before entering the zone. For permanent speed settings, 
desired speed decisions were used (yellow bar). Desired speed decisions make vehicles slow down 
after crossing the yellow bar. To reduce the speed of a vehicle at the same time make them slow 
down before crossing the desired speed decision (yellow bar), a short reduced speed area (yellow 
box) was then placed just upstream of the desired speed decision point. The lengths of the reduced 
speed area were defined as well as deceleration and acceleration profiles on the approach and exit. 
Length of calming features in VISSIM varied depending on type of calming feature simulated and 
the reliability of data heavily depended on calibration. Speed percentiles collected from the field 
using GPS receiver were used to determine effective speed distribution for desired speeds in 
VISSIM. The minimum, 7th, 15th, 50th, 85th, 95th and max percentile speeds were used to assign 
percentiles from field as input in the desired speed distributions [34]. Also, for each field run, 
acceleration and deceleration rate of a vehicle were calculated followed by the mean values for 
different speed calming features at the approach and exit of respective reduced speed areas in 
VISSIM. Tables 3.3 summarizes the descriptive of GPS captured speed data across the calming 
features indicating speed humps had the lowest average speed while speed table 11 had the highest 
average speed. Speed humps recorded the lowest average deceleration while speed table 2 recorded 
highest values of deceleration. Simulated vehicles’ deceleration rates are important for each 
calming feature as they represent driving behaviors in evaluating of traffic calming features [43]. 

Figure 0.6 Modelling of Traffic Calming (Reduced Speed Areas and Desired Decisions) 

Table 0.3 Descriptive statistics for each calming feature analyzed 

Statistics 
Speed 
table 1 

Speed 
table 2 

Speed Raised 
Hump Crosswalk 

(17-ft) (21-ft) 

Speed Average 14.66 15.42 13.6 14 
(in mph) Standard Deviation 5.238 4.61 4.12 5 

Deceleration Average 3.44 4.52 2.43 1.28 
(in ft/s2) Standard Deviation 1.08 0.974 4.12 0.676 
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3.6 Model Calibration 

Calibration of the model ensures the model reflect the real-world conditions. Calibration of the 
model fell into three main types and includes the following: (i) Number of simulations runs (ii) 
volume Inputs (iii) speeds calibration. 

3.6.1 Number of simulations runs 
The required multiple runs with default parameter were determined in the model by defining an 
adequate vehicle travel time section and then, four initial simulation repetitions were executed. 
Sample standard deviation was computed using average travel time per section for all four 
preceding runs with a random seed increment step of 1. The minimum repetitions were computed 
using the formula below at 95% confidence level [47] 
C= 

7 
(3.6) . ∗ 0

12%
3
4,6%2 √6
. 

Where:       C = 1−Confidence Level,   
t (1-α/2), N-1 is a t-statistic value for the probability of a two-sided error summing to 

alpha with N-1 degrees of freedom. Minimum of 10 simulation runs were found to be enough for 
the simulation model. 

3.6.2 Volume Inputs 

The number of vehicles (vehicles/hour) recorded in field were inputted in VISSIM for simulation. 
To ensure that a model reproduces a well reasonable real-world traffic volume as assigned, 
Geoffrey E. Havers developed a continuous volume tolerance formula known as GEH Formula. 
This formula was used to compute GEH statistic and a value less than 5 was accepted. 
For hourly traffic flows, the GEH formula is: 

= ;
<(>%?)@ 

(3.9)                  9: >A? 

Where: 
m is the traffic volume from the traffic model (vehicles per hour) 
c is the real-world traffic count (vehicles per hour). 

Table 0.4: GEH computations 

street names 

From To observed simulated GEH Decision 
count  count 

Oak Hill 
School 

Robertson 
Rd &Van 

36 28 1.41 Acceptable 

Lee Dr 
Oak Hill 
School 

Churchwood 
Dr 

72 85 1.47 Acceptable 

Robertson Rd 
&Van Lee Dr 

Oak Hill 
School 

75 82 0.79 Acceptable 

Churchwood 
Dr 

Oak Hill 
School 

48 49 0.14 Acceptable 
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3.6.3 Speeds calibration 
Figure 3.7 presents speed profiles along study roadway segment with calming features. As shown, 
speed decreased to its minimum at the calming features locations then increased to maximum 
speed values. Influence zones can also be determined from the graphs, which are areas over which 
traffic calming features produce a reducing speed effect. For instance, drivers approaching the 
calming features started to reduce their speeds at 220 ft, 100 ft, 30 ft, and 50 ft from speed table 1, 
speed table 2, speed hump and a raised crosswalk respectively. The reduction area for speed hump 
was relatively short compared to other calming features. Microsimulation model was calibrated to 
ensure the model represents the observed traffic behavior as in field. Different parameters and 
variables were adjusted to match the realistic conditions. The adjusted data include volume, speed 
distribution, traffic composition etc. Before evaluating various scenarios of calming measures in 
VISSIM, simulated and observed data were compared. 

It is evident from Figure 3.7 that the speed profiles for both simulation and field matched. The 
patterns were similar for each respective calming measure type. For accuracy, average speeds of 
simulated and observed data were computed and compared. As shown in Table 3.5, difference in 
average speeds between the simulated and observed data are less than 1% for all types of traffic 
calming measures. Also, based on t-test results, the difference between observed and simulated 
speeds at all calming features were found to be statistically insignificant. 

Table 0.5: Calibration results between the simulated and observed data 

Speed Speed Speed Raised 
table 1 table 2 hump crosswalk 

Average speed (in mph) 
Observed 
Simulated 
Difference (%) 

14.66 
14.64 
0.14 

15.42 
15.39 
0.19 

13.6 
13.55 
0.37 

14 
13.9 
0.71 

3.7 Model Validation 

After the calibration of the model, the model was validated using travel times collected on different 
weekdays using test vehicles equipped with GPS. Validation is the process of testing whether the 
calibrated model represents a viable and useful alternative means to real experimentation. First, 
we started with visual validation; this was done by inspecting the graphical presentation of the 
modelled network as the model runs, trying to spot any unusual behavior [48]. All the major 
problems were removed from the model. However; this cannot replace a more quantitative 
validation. Therefore; travel time data was collected in different weekday using testing vehicles 
which were then compared with average simulated travel times. Percent error was used to calibrate 
the model [49] .The formula can be applied either to a single pair of observed-simulated 
measurement or to aggregate network wide measures. From the table 3.6 below it was noticed that 
the average difference in travel times in VISSIM model from field were below 15% indicating a 
reasonable matching between the simulated and observed travel times. Generally, all validation 
results for the two directions (NB and SB) were satisfactory with minimal errors. Therefore, it was 
concluded that the model was well calibrated and validated. 
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Scenario 1: Speed table 1 Scenario 2: Speed table 2 

Scenario 3: Speed hump Scenario 4: Raised crosswalk 
Figure 0.7 Examples of speed profiles for observed and simulated data 

Table 0.6 Validation Results using Percent Error (PE) 
VISSIM Calibration Runs 

Travel time Run NB Travel Time (s) SB Travel Time (s) 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

128.3 
127.38 
125.48 
131.13 
128.85 
130.44 
128.93 
131.19 
129.78 
127.91 

129.12 
122.41 
127.21 
130.47 
128.26 
126.89 
126.83 
130.41 
127.74 
128.87 

Average TT 128.94 127.82 
Min TT 125.48 122.41 
Max TT 131.19 130.47 
Average Speed(mph) 19.4 19.6 

Average TT Difference from field -6.94 -13.47 
% Difference 5.7 12.1 
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3.8 Simulated Scenarios 
A road link of 5250 feet was built in the simulation environment, and the devices were placed in 
the analysis section in different distances from each other. Five series of simulations were carried 
out for five different configurations: 

• Without calming devices 
• Speed table 1(17-ft wide table) installed 
• Speed table 2 (21-ft wide table) installed 
• Speed hump installed 
• A raised crosswalk installed 

For each type of scenario, simulations were conducted with 9 different traffic volume accessing 
the road, input flow volumes were assigned from 100 to 1700 vehicles per hour per lane in the 
increment of 200. The case of free flow (no calming devices) is simulated as the base case for all 
9 flow conditions. For each type of scenario, a vehicle travel time measurement was placed in 
upstream of the calming device at approximately 385 feet then the destination was placed at 
approximately 300 feet after the device(s). Distances and travel times were recorded in the travel 
time sections and, were used to compute the average speed for individual vehicle per each volume. 
The minimum distance between calming features was computed to ensure drivers regain their 
average speeds before crossing the next calming measure. This was considered in order to avoid 
the possibility of short distance between two calming measures in which the previous calming 
feature influencing the next measure. The maximum speed of drivers is a speed limit of 30 mph 
and the minimum speed required to cross the calming device was 6.92 mph. Minimum distance 
was calculated based using the formula: 
B@CBD

@ 
=S

@E

For values of Vo and V equal to 6.92 and 30 mph respectively, and “a” is the acceleration (2.5m/s2 

for passenger car), a value of S = 111.65 feet is obtained. Traffic calming features were therefore 
coded and placed at least 111.65 ft from each other to ensure a desired speed is achieved. In this 
research, 350 ft was set as the minimum distance between calming measures. For each type of 
traffic device, 3 spacing were simulated: 350, 700 and 1050 feet. 9 different traffic flow levels 
were considered from 100 to 1700 vehicles per hour per lane in the increment of 200. 

3.9 Capacity estimation 

The simulation runs were performed along the 5250 ft study segment based on default values of 
driving behavior parameters but initially without the presence of calming features. Using 
simulation generated data, the speed-flow curves were developed, and the capacity was estimated. 
Initially, higher values of flows were obtained from the simulation compared to field conditions 
(possible traffic volume without presence of calming features). This implied that drivers were 
aggressive than normal. A proper calibration of parameters was therefore conducted which 
involved fine-tuning of safety distance parameters until the model output capacity was close as 
possible to the field capacity. Calming scenarios were coded in calibrated models that were used 
to generate flow-speed-density relationships. The speed-density curves resulting from calibrated 
VISSIM model were first developed and used to derive mathematical models which best suited 
the data. The steady state equations i.e. Flow (Q) = Speed (U)*Density (K) were used to estimate 
relationships as shown in equations (1) and (2). The algorithms developed were applied to fit the 
simulated data [36].Research has shown that macroscopic models can successfully be developed 
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from generalized car following equations whenever suitable values of the distance between the 
headway exponent in equation (l) and the speed exponent (m) are chosen [50]. May and Harmut 
[36] investigated the relationship between macroscopic and microscopic models in which they 
proposed a method to obtain non-integer values of m and l exponents of the general car-following 
model. This model describes speed U as a function of density K as: 

N

F(G) = (FI
J%> + c. GM%J)NCO (1) 

Where: 
Uf is the, free-flow speed 
K is traffic density, and 
l, m and c are model parameters representing the distance headway exponent, speed exponent and 
appropriate constants consistent with physical restrictions respectively. All these parameters 
together with Uf should be calibrated according to simulated results. By using speed-flow-density 
relationship, Q=UK, the flow was obtained as follows: 

N

Q= K. (FI
J%> + c. GM%J)NCO 
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CHAPTER 4: RESULTS 

The results from four different scenarios; speed table 1, speed table 2, speed hump and a raised 
crosswalk, are presented to illustrate the impact of traffic calming on vehicle speeds and capacity. 

4.1 Speed Results 

Number of vehicles that passed over calming devices in a predefined 5250 feet section in VISSIM 
was compared with expected number of vehicles to pass over calming devices. Figure 4.1 below 
illustrates the comparison of input flow and expected flow. At 1180 vphpl the capacity of the 
facility was reached. At this instance, the v/c is equal to 1. This analysis was very important in 
speed and travel time computations to avoid delay caused interactions between vehicles at high 
flow levels. For flow less than 1180 vphpl, the output flow remains the same as the input flow, 
irrespective of spacing of calming devices. At higher flows beyond capacity of the facility vehicles 
are removed from the system after 1 hour of simulation which leads to higher variations between 
the input flow and expected flow. 

1400 

1200 

1000 
speed humps at 

800 350 feet apart 

speed humps at 600 700 feet apart 

speed humps at 
1050 feet apart 

400 

200 

0 
100 600 1100 1600 

Input flow (vphpl) 

Figure 0.1: comparison of input flow and expected flow 

Speeds were analyzed to study whether; the presence of calming devices had impacts in reduction 
of speeds. Figure 4.2 below illustrates the variation of mean speeds with presence of calming 
devices at different spacing apart. The speed limit was set to 30 mph. Hence, the base case under 
no traffic calming shows a mean speed of 30 mph. As flow increases the reduction in speeds 
decreases but the reduction in speeds is relatively insignificant compared to when calming devices 
are present. The minimum spacing used in the simulation to achieve desired speeds of 350 feet 
was used. From the graph, it is evident that when the traffic volume is above 1180 vphpl speed 
reductions are more pronounced. This is due to both presence of calming devices and vehicles held 
up in queue. At input flow below the 1180 vphpl, vehicles cross over speed tables at lower mean 
speeds compared to other spacing. 
One way-between group analysis of variance was conducted to explore the impact of mean speeds 
due to presence of calming devices at varying spacing. Scenarios were divided into three categories 
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350 feet apart, 700 feet apart and 1050 feet apart. The One-way ANOVA procedure produced a 
calculated p-value of 0.0001 which is less than the reference p-value of 0.05.This result suggests 
that one must reject the null and accept the alternative hypothesis that the mean speeds of the 
scenarios are different according to spacing apart. Statistically, this means that there was a 
significant difference in mean speeds for all three scenarios. Also, Post-hoc comparisons for mean 
speeds at 350 and 700 feet apart using LSD produced a calculated p-value of 0.001.Statistically, 
this means that there was a statistically significant difference in mean speeds for calming devices 
at 350 and 500 apart. The same applies to mean speeds for 350 feet and 1050 apart. Generally, for 
all scenarios, reduction in speed increases when the spacing between speed tables is close. The 
likely points to achieve minimum speed assumed to be at the measure. However, not all drivers 
achieved minimum speed at the measure as it was seen from individual speed profiles developed 
from GPS data. Some minimum speeds occurred before or after the midpoint of the respective 
traffic calming. 
Figure 4.3 illustrates the mean speed reductions due to traffic calming measures; it was found that 
that spacing was a key parameter for average travel speeds of cars. The impacts of speed humps 
and raised crosswalks for 350 feet spacing are almost similar while for the speed tables 2 for the 
same spacing, they caused the lowest reduction of speed of drivers of about 47%. And, when the 
spacing is 1050 ft, drivers experience the lowest reduction in speeds for speed table 2. 
Recommended spacings to attain desired street speeds were calculated from Speed-Spacing model 
which developed from the calibrated VISSIM model (Fig. 4.4). Therefore, in order to maintain 
mean speeds below 15 mph, spacings should not exceed 430 feet, 265 feet, 550 feet, 630 feet for 
17-ft speed tables, 21-ft speed tables, speed humps and raised crosswalks respectively. 

Figure 0.2: Impact of calming measures on mean Speed 

24 



  

 
 

 
   

 

 
  

 

  

       
      

 
 
 

   

 

 

 

  

 
 

 
 

 
 

 
 

 

 

 

60 
%

 S
p

ee
d

 r
ed

u
ct

io
n

 50 

40 

350 feet spacing 30 
700 feet spacing 

1050 feet spacing 20 

10 

0 
speed table 1 (17 Speed table 2(21- Speed hump Raised crosswalk 

feet) feet) 

Figure 0.3: Mean Speed reductions due to Traffic Calming 

25 
y = 0.0083x + 12.814 

R² = 0.9234 
20 

y = 0.009x + 11.153 
15 table 1 R² = 0.9321 

table 2 
y = 0.0089x + 10.133 Series3 10 R² = 0.9446 

y = 0.0086x + 9.6 raised crosswalk 
R² = 0.9494 

5 

0 
0 200 400 600 800 1000 1200 

Figure 0.4: speed spacing model for Traffic Calming 

4.2 Capacity Results 

Speed-flow relationships were used to estimate capacity of the study segment with presence of 
various types of calming features. Table 4.1 summarizes the study developed capacity for road 
segments in presence of various calming features. 
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Table 0.1: Overall results for capacity for all scenarios 

Capacity vphpl 

Spacing Speed Table Speed Table Speed 
Raised cross-walk 

(ft) 1 2 Hump 

350 660 690 650 670 
700 690 740 680 675 
1050 750 775 740 730 

 

4.2.1. Speed Tables  
The analysis of capacity impact was conducted based on the width of two speed tables available 
along the study section; that is 17 ft wide (speed table 1) and 21 ft wide (speed table 2). It was 
found that the capacity varied with spacing of calming features as well as the number of calming 
features. Figure 4.5 shows the speed-flow relationships for the 17 ft wide speed table. Figure 15 
shows the speed-flow relationship for a 21-ft wide speed table. As shown in Table 4.1, the capacity 
varied with spacing and number of calming measures implying that the capacity is high for wider 
speed tables (21 ft) compared to narrow speed tables (17 ft). Spacing narrow speed tables (17 ft) 
at 1050 ft apart resulted in about 23% reduction in capacity, spacing at 700 ft apart reduce capacity 
by 29% and spacing of 350 ft reduces by 32%. Wider speed tables (21 ft) resulted with slightly 
lower reduction in capacity compared to 17-ft wide tables. For instance, spacing 21-ft speed tables 
at 1050 ft apart resulted in 20% capacity reduction while spacing at 700 ft resulted to 24% capacity 
reduction. Non-parametric statistical testing found the capacity reductions of 17-ft and 21-ft speed 
tables are not significant. Further analysis on capacities showed that for each increase in number 
of calming feature results into linear decrease of capacity by approximately 20, 37 and 34 vehicles 
per hour per lane when 17 ft speed tables are spaced 350, 700, and 1050 ft apart respectively. For 
21-ft speed tables, each unit increase in calming feature results into a linear decrease in capacity 
for approximately 15, 35, and 27 vehicles per hour per lane when speed tables are spaced 350, 700, 
and 1050 ft apart respectively.  
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Figure 0.5: Speed table 1 (17-ft table) Speed-Flow Relationship 
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Figure 0.6: Speed table 2 (21-ft table) Speed-Flow Relationship 

4.2.2. Speed Humps 
The speed-flow relationship for speed humps spaced at 700-ft apart is shown in Figure 4.7. The 
capacity differed from free-flow capacity in which spacing the features at 350 ft reduced capacity 
by about 33% while a 700 ft spacing reduced capacity by 30%. For each increase in speed hump 
results into linear decrease of capacity by approximately 21, 39, and 36 vph when speed humps 
are spaced at 350-ft, 700-ft, and 1050-ft respectively.  
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Figure 0.7: Speed-Flow Relationship for Speed humps spaced at 700 ft apart 
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4.2.3. Raised Crosswalk 
On raised crosswalks, the installation of these features at a spacing of 350 ft caused 30% reduction 
in capacity. However, the capacity decreased by 25 % when these calming features are spaced at 
700 ft. In comparison, when speed tables are spaced at about 350 ft spacing the capacities are 
reduced by 32% and 33% for speed humps. This shows raised crosswalks reduce capacity less 
compared to speed tables and speed humps though not significantly. 

4.3 Conclusions 

Traffic calming measures are installed along roadway segments for the purpose of reducing traffic 
speeds and/or cut-through volumes, for safety and livability purposes. However, these calming 
features sometimes lead to reduced capacity that is worthy evaluating. This study used VISSIM 
microsimulation to simulate the impact of speed calming features and spacing to capacities of 
residential roadways. GPS collected speed data were collected along the study then simulated 
through VISSIM to characterize driving behaviors for speed tables (17-ft and 21-ft wide tables), 
speed humps and a raised crosswalk. About 40 trips were generated using test vehicles equipped 
with GPS were obtained from drivers who had no idea of the purpose of the study to avoid skewing 
the driving speeds. The valid numbers of runs were used to develop speed profiles and for further 
computations of accelerations and decelerations at the approach and exit of the respective calming 
features. The new approach for estimation of capacity in a road segment with presence of calming 
measures was developed in this study. The study concluded that there was a minimal difference in 
capacity resulting from a 17-ft wide speed table compared to 21-ft wide speed table. However, the 
17-ft table produced slightly higher reduction in capacity when spaced at 350ft, 700ft and 1050 ft, 
the speed tables of 17 ft when compared to 21 ft speed tables. The capacity reductions were 30% 
for 1050 ft spacing, 34% for 700ft and 37% for 350 ft spacing. For all type of calming features 
evaluated, the addition of number of calming measures in a link resulted into linear decrease in 
capacity. 

Furthermore, from this study, it was found that the traffic calming devices significantly reduce the 
speeds of vehicles, and it is best to keep spacing of 630 ft or less to achieve desirable crossing 
speeds of less or equal to 15 mph especially in a street with schools nearby. 

The report therefore concludes that speed tables are slightly better than speed humps and raised 
cross-walks in terms of preserving the roadway capacity. The report also concludes that spacing 
the speed tables or speed humps or raised cross-walks at 1050-ft instead of 350-ft improve capacity 
by approximately 13%. 
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CHAPTER 5: ROAD DIETS 

5.1.Introduction 

Over the course of the 20th century, four (4) lanes roads became prominent (normal throughout 
the country). No engineering guidance during that period encouraged consideration of a three-lane 
alternative. A few years later due to increase in motor vehicles, many roads became congested and 
hence more lanes were added to increase capacity without careful examination of the pedestrian’s 
safety. Unfortunately, these costly expansions of road infrastructures have not given the desired 
results [51] [52] [53]. Nowadays, these roads are unsafe and therefore, a solution which tends to 
improve safety by reducing highway fatalities and serious injuries is needed. One such a solution 
is the use of road diets. Road diets involve reallocation of road space through reduction of the 
number of motorized traffic lanes. The freed-up space can be used for the following features: (1) 
A bike or parking lane which can be used to increase the buffer between vehicles and pedestrians 
walking along the sidewalks or fixed objects, (2) space for pedestrian refuges, (3) a reversible 
center lane, and (4) addition or widening of footpaths. These types of public safety treatments can 
result in a crash reduction, improved livability, and community support. They also encourage 
walking, bicycling, and transit use [54]. However, these road diets can also result in negative 
aspects which are worth evaluating. The tradeoffs include: delay, longer queues and travel times, 
increase of rear-end crashes, increased emissions, and diversion from the corridor. In order, to 
address the congestion concern due to road diet installment, the traffic signal timing along the 
corridor may be optimized to improve the progression of traffic and allow easy access of motorists 
at stop-controlled intersections. This research evaluated the road diet impacts using 
Microsimulation and Surrogate Safety Measures (SSAM) by assessing the capacity impacts and 
safety effects of road diet conversions. 

Four lanes have quite a few conflict points; these are the major points where a crash can happen. 
The common crash types experienced in four-lane roads are emerging left turn lanes, sideswipe 
crashes, and rear end crashes. Road conversions with 3 lane configurations reduce the number of 
crash points; the middle shared left turn lane smoothly takes left turners out of the traffic flow. 
This causes improvement in operating efficiency and safety as a result of removing left turning 
traffic and avoid queue which could form behind such vehicles while at the same time removes 
lane changing. Further, these conversions can result in lowering of speeds which in turn improves 
the safety of the segment by lowering traffic crashes and provide longer reaction time [55].  

There has been considerable discussion recently on the Road Diet safety analyses. These research 
studies have featured important factors such as the number of treatment sites, traffic volume, and 
key safety results. Pawlovich [56] reported 25.2 percent reduction in crash frequency and 18.8 
percent reduction rate for 30 sites comprises of 15 roads diets and 15 comparison sites. A similar 
study was conducted by Li et al [57] in 15 treatment sites throughout Iowa, a road diet was found 
to reduce all crashes by up to 29% per mile section, and 18.8% reduction in crash rate. Research 
conducted by Knapp and Giese [58] studied 13 road diet sites from Montana, Minnesota, 
California, Washington, and Iowa. The authors found that road diet conversions resulted in total 
crash reductions ranging from 17 to 62 percent [58]. A study evaluating road diets in New Jersey 
found that the average speeds were reduced between 1 and 9 miles per hour [59]. Li and Tian 
conducted a road diet case study in Reno, Nevada that found average speeds to be reduced by 2 to 
3 miles per hour [60]. Another study was undertaken by Gates in Minnesota found more reduction 
of 44 percent in the total number of crashes. The study also showed the reductions in both mean 
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and 85th percentile speeds due to the presence of road diets. The study by Knapp and Giesse 
specifically cited that 85th percentile speeds reduced by less than 5 miles per hour. 

The time and data gathering constraints have led to the use of traffic simulation as an alternative 
approach to evaluating the operation of road diets. Through traffic simulation models, one can 
assess changes in road configurations. For example, Noland et al. [61] investigated the feasibility 
of a road diet by analyzing the results of a micro-simulation of the traffic network using VISSIM 
software. The key output provided by the model is the total travel time within the network as 
well as the time each vehicle is delayed. Stamatiadis et al. [62] proposed guidelines focused on 
evaluating and comparing the operation of three- and four-lane roads at signalized intersections 
to provide basic guidance as to when the road diet conversion is appropriate. However, the effect 
of frequent stop and slow-moving vehicles that block lanes of traffic on road diet capacity has 
received less attention in the research. Knapp et al [63] simulated comparisons of a quarter-mile, 
four-lane, undivided roadway with a three-lane roadway, each having different percentages of 
heavy vehicles, one to two bus stops, and various headways and dwell times (with a set amount 
of entering volumes, number of access points, and turning volumes).The study showed that the 
impact of these vehicles on average arterial travel speed was much higher along the three-lane 
cross-section than that of the four-lane undivided roadways. Further, very few studies have 
sought to use surrogate safety assessment tools with microsimulation to investigate the operation 
of road diets. 

5.2.Objective 

The objective of this was to investigate the operational impacts of road diet projects on the number 
and frequency of stopping and slow-moving vehicles. The primary reason for this increased impact 
is the inability of other vehicles to legally pass frequently stopping or slow-moving vehicles. The 
number and duration of vehicle stops along the corridor during the peak hour will be considered. 
The study also examines the information on the level of safety of road diets using a surrogate 
measure of safety. The study is implemented using VISSIM microscopic simulation software and 
SSAM. In a microsimulation environment, car-following and lane-changing rules prevent 
simulated vehicles from ever crashing. However, safety can be estimated by surrogate measures 
of safety. FHWA’s Surrogate Safety Assessment Model (SSAM) is designed to analyze simulated 
vehicle trajectories in order to quantify conflicts that are surrogate measures of safety 

5.3.Influence Bus Stops Evaluation 

Frequent stop and slow-moving vehicles have a greater impact on the operation of a three-lane 
roadway than a four-lane undivided roadway. Some examples of these types of vehicles are buses, 
mail, double parked vehicles, buggies, delivery trucks, agriculture, etc. It is very important to take 
into account the number and duration of vehicle stops along the corridor (at peak times). One major 
concern with a road diet installation is that stopped buses in the now-singular through lane block 
all downstream vehicles while boarding and alighting. This blockage of travel lanes causes 
congestion as traffic backed up behind buses while loading and unloading services at the curb. A 
similar consequence as a result of mail delivery has been found in urban areas in other studies [64]. 
Prior to a road diet installation, vehicles were able to able to pass the stopped buses or mail carries 
using the inside lane. The blockage that occurred after the conversion may result in some vehicles 
illegal maneuver to pass in the two-way turn lane (TWLTL). In our selected area, there were no 
bus turnouts. The bus turnouts in the road diets provide a space away from a travel lane for 
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potential accommodations for bus operations (e.g., stopping, loading, unloading). According to 
other studies [65] [66], bus stop locations should provide at least 50 feet in length for each bus. 
However, this is not always the case for most of the road diets. Most transit operators prefer in-
lane stops versus turnouts due to the difficulties of through lane ingress from the turn-out. These 
buses making stops at the travel lanes interfere with the flow of vehicular traffic. The absence or 
presence of narrower bus pull-offs caused by the presence of sidewalks makes the condition worse. 
The frequency of stops is another major factor which can attribute the reduction of travel lanes for 
other vehicles. One possible mitigation measure to minimize the impact of frequently stopping 
vehicles is to provide pullout areas at specific locations along the corridor. Another possible 
mitigation is to use some transit lanes. On the other hand, In some cases, road diets were deemed 
positive by the transit agencies [67] [68]. 

In order to design an appropriate measure for a smooth flow of traffic, it is very important to study 
the influence of bus tops on traffic flow. Hence in this study, the extent of speed reduction in the 
road diet suffered by different vehicles due to the location of curbside stops and bus bays at various 
roadway and traffic conditions were analyzed. There are three types of bus stops in urban areas 
which are curbside stops Bus bays, and Bus boarders. The presence of curbside stop creates a 
temporary bottleneck, reducing the road capacity, during its dwell time. Bus bays are usually 
utilized for locations on high volume arterial roadways. However, in this study, only the two prior 
bus stops were used for analysis. 

5.4.Conflict Analysis 

5.4.1. Surrogate Measures of Safety for Road Diets 
In addition to conducting formal safety assessments of Road Diets using data-driven analysis 
techniques based on pre- and post-installation crash data [55] [60], surrogate measures of safety 
can provide valuable feedback to State and local agencies regarding both actual and perceived 
safety outcomes. The limitations of other methods are to wait until a crash occurs, but in reality, 
there are a lot of near misses. A surrogate measure of safety can provide information on the level 
of safety of a location or system using the information other than crash data. Surrogate Safety 
Analysis Model (SSAM) [69] is a method to automate a conflict analysis by directly processing 
vehicle trajectory data produced by microsimulation models including VISSIM, AIMSUN, 
Paramics, and TEXAS. The analysis steps (Workflow) involve the following procedures: 

• Microsimulation Modelling 
• Producing Trajectory (TRL) File by SSAM 
• Analyzing Trajectory (TRL) File by SSAM 
• Making an inference 

In this context evaluating the impacts of access management alternatives of these road diets 
installed using crash data, is of vital importance. The road diets were already installed and 
therefore, in a conventional way one would install a new alternative and wait to collect crash data 
for comparison which is subjected to cost and time issues. Surrogate safety assessment model 
(SSAM) can reduce cost and time issues, both spatial analysis and filtered analysis of specific 
locations can be done, and identification of conflicts are defined, meaning less uncertainty for 
comparison. The traffic conflicts are identified, classified, and evaluated in the vehicle trajectory 
data output from microscopic traffic simulation models. The trajectories describe the course of 
vehicle positions through the network. This includes the z coordinates of a vehicle. Figure 5.1 
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illustrates the conflict angle; an approximate angle of a hypothetical collision between conflicting 
vehicles based on the estimated heading of each vehicle. 
SSAM Measurement Parameters include: (1) Minimum Time-To-Collision (TTC), (2) Minimum 
Post-Encroachment (PET), (3) Maximum Deceleration rate (MaxD), (4) Maximum Speed (MaxS), 
(5) Maximum Speed Differential (DeltaS), and (6) Vehicle Velocity Change (Delta V). In the 
present analysis, time to collision (TTC) as a threshold to establish whether a given vehicle 
interaction is a conflict and the relative speed (DeltaS) as a proxy for accident severity were used 
in this research. Their definitions are as follows [70] : 
• “TTC” is the minimum time value observed during the interaction of two vehicles on a 

collision course. If at any time step the TTC drops below a given threshold [1.5 s in this 
work, as suggested for urban areas [71]], the interaction is tagged a conflict. 

• DeltaS is the difference in vehicle speeds as observed at tMinTTC. More precisely, this 
value is mathematically defined as the magnitude of the difference in vehicle velocities (or 
trajectories)., such that if v1 and v2 are the velocity vectors of the first and second 

vehicles respectively, then DeltaS = || v1 - v2 ||. 

Figure 0.1. Conflict types angle [72] 

Surrogate measures give an indication of the risk of crashes. The greater the number of conflicts 
the greater the number of crashes expected. Validation studies conducted by FHWA [69] suggest 
that there is a correlation of SSAM conflicts with crash data based on 83 intersections modelled 
in microsimulation. As equation (1) suggests there is a strong correlation between conflicts and 
crashes. The number of crashes/ year can be estimated from the model. 

Crashes/year  = 0.119 *1
PQRIS?T 

(1)
:QUV 

4 J.WJX 

5.5.Methodology 

5.5.1. Microscopic simulation 
The road diet in this study was evaluated using VISSIM micro-simulation software. PTV [73] 
states that the traffic model used in VISSIM is a discrete, stochastic, time step-based model on the 
microscopic level with driver-vehicle-units as single entities. Due to its flexibility in network 
structure, it gives the user the confidence to know they can model any type of geometric 
configuration or unique operation/ driver behavior encountered within the transportation system.  
VISSIM does not have a direct way to code a shared lane. Therefore, lanes with opposing traffic 
were coded separately. The model was developed in this study area to reflect the existing 
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conditions of the 3-lane cross section of the corridor. This model was calibrated based on the 
available field travel times. Calibration of the model ensures the model reflect the real-world 
conditions, that is, driving behaviors and geometric characteristics of the roadway. Only AM hours 
operations were considered for these models.  
Vissim has the following advantages compared to other simulation models: 

• Powerful lane changing behavior 
• Modelling of parallel vehicles flows 
• Collection of different vehicle types and user-defined changes in driving behaviors 
• Different types of traffic demand modelling 
• True multiclass networks (route choice can be determined for each vehicle type 

5.5.2. Study Site 
Microscopic simulation was conducted for a road diet located in the city of Nashville, Tennessee 
(Figure 5.2). The 51st Avenue complete street in the Nations Nashville makes the neighborhoods 
more livable. This was a fast-changing neighborhood, and hence the street was made to work better 
for drivers, bicyclists, and pedestrians alike without adding time to their commutes. The four lanes 
were transformed into a complete street to enhance and create a sense of place for the growing 
neighborhood. The street is composed of the two-way turning lane, on-street parking, slower speed 
limits, and dedicated bike lanes. The 51st Avenue North traffic calming segment starts from 
Charlotte Avenue to Centennial Boulevard. The corridor is in the neighborhood that is situated in 
the north of Charlotte Pk and Interstate 40 on the west side of Nashville. The original street had 
four traffic lanes, two in each direction. The road diet allowed for the re-purposing of the existing 
pavement to provide on the street and a two-way cycle track from Alabama Avenue to Centennial 
Boulevard. The two-way cycle track, signified throughout the corridor with green pavement 
and specialty bike pavement markings, uses flexible bollards and delineators to provide physical 
separation from the adjacent traffic. Pedestrian infrastructure was upgraded with the addition of 
decorative crosswalks and signage to provide increased visibility. 

Figure 0.2. The layout of the Test Site 
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There is only one main transit route operating along 51st Ave Street. Headways, or the time 
between buses, were ranging from 30 minutes to 20 minutes during peak times. Most of the bus 
stops along 51st Ave N include a sign pole with no shelters or seating. Bus stops at Tennessee Ave, 
Illinois Ave NB, Georgia Ave NB, and Charlotte Ave. 

5.5.3. Data Input 
For the purpose of calibration and analysis, traffic and GPS data were collected. Traffic data 
include intersection turning movement counts, turning ratio at an intersection, daily traffic volumes 
by direction, the signal timing of the signalized intersection, the schedule of the transit operation, 
the transit dwelling time at each bus stop and dimensions of stops, and operating speed 
information. The Miovision Scout unit [44] was used to measure traffic flow at major intersections 
along the study corridor. The Miovision Scout unit uses video to collect traffic movements and 
roadway volumes in intersections and roadways. This camera system was mounted on a stand with 
its top camera directed toward one direction of traffic, fixed at sidewalk rails, looking down on 
traffic. The camera was set up to record vehicles in all lanes and intersections. Data were collected 
for 12 hours period during weekdays between 7 am and 6 pm. Data were extracted and screened 
for analysis and VISSIM simulation. 

For the signal plan; in the existing case, there are four signalized intersections out of 10 along the 
whole corridor, which are Charlotte Ave & 51st Ave, Alabama & 51st Ave, Delaware & 51st Ave, 
and Centennial &51st Ave. All four signalized intersections are fully actuated, with a detection 
zone located at the stop line, and the detectors are operating in the “presence” mode. The existing 
plans signal plans at Alabama & 51st Ave N and Delaware & 51st Ave North have two phases with 
ring barrier controller structure. They have cycle lengths of 70s seconds at AM peak time and 65 
seconds at PM peak time. The two intersections are running on signal procession due to the short 
distance between them. Table 5.1 shows the traffic volume and signals timing settings for 
Delaware &51st Ave N. 

Table 0.1: Traffic Volumes & Signal Timing Settings 

Traffic volume 
Phase 

Number 
1 2 3 4 5 6 7 8 

Lane Type SBL NBT NBR WBL EBT EBR NBL SBT SBR EBL WBT WBR 
Volume 
(veh/hr) 

4 242 10 45 3 10 3 5 320 1 45 135 

Signal Timing Setting 

Min Green 10 7 10 7 
Veh 

Extension 
3 3 3 3 

Max 1 50 30 50 30 
Yellow 4.0 3.5 4 3.5 

Red 
Clearance 

2.5 2.5 2.5 2.5 
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5.5.4. GPS Trajectory Data 
A portable Wide Area Augmentation System (WAAS/EGMPS) enabled USB GPS Receiver was 
used to collect second-by-second vehicle trajectories along the road segment [45] . The GPS 
provides positional horizontal accuracy up to 5 meters 3D RMS, velocity accuracy of 0.1m/sec 
and time accuracy of 1 microsecond synchronized to GPS time. Fig. 5.4 illustrates a diagram of 
speed profiles provided by a GPS receiver along the study segment. Instantaneous GPS speed data 
for the buses and cars were collected using GPS equipped on the test Transit vehicle or car. The 
vehicle equipped with GPS is driven along the test route in a similar way to the floating car method. 
In this study, both the speeds of transit vehicle and car were collected. Five repeated cycle runs of 
the test were conducted along the same route. 

5.5.5. Geometric Design 
The process of modeling a road diet in VISSIM starts by tracing an aerial photo of the corridor, 
specifying each approach number, width, and length of lanes. Once the geometry of the road diet 
is defined, traffic flows (i.e., vehicles per hour) for each approach are allocated for all directions. 
The road geometry data were derived from the default map service provided in Vissim. The map 
was used as the base map for developing the model for simulation. The map provides road 
geometry data, such as the edges of the road, the centerline of the roads and other geometry. See 
figure 5.3. In existing case, the section of 51st Ave N in the corridor is bi-directional with a single 
travel lane on both directions with a two-way left-turn lane in the middle, as shown in Fig. It also 
features a protected two- way cycle track (bike lanes), slower speed limits, and on-street parking.  
The portion of the design stretches from Alabama Ave to Centennial Blvd. with the traditional 
lanes stretching from Alabama Ave to Richland Creek Greenway. There are 6 intersections along 
the street from Centennial to Charlotte 

Figure 0.3.  Section of the road diet 
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 Figure 0.4. Speed profiles along the study segment recorded by the test vehicles 
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5.5.6. Origin-Destination Matrices 
Dynamic origin matrix demand estimation was used to estimate the unknown demand values for 
all O-D pairs with the use of time-varying link flow observations. The O/D matrix was deduced 
from the collected data sample of traffic volumes. Due to the lack of data, the calibration of the 
model was made in a qualitative way, based on local observations, known dynamics of the area 
and used for quality control purposes the traffic volumes recorded in the studied intersections. 
Each OD matrix in VISSIM applies to a specific vehicle composition. Since the corridor consists 
of mainly two traffic compositions (cars and buses), each O-D matrix produced two VISSIM O-D 
matrices, for a total of 10 matrices (15 minutes interval-each with dimensions 12 by 12). 

5.5.7. Dynamic Assignment 
Vissim supports two forms of input for traffic demands [73]. Dynamic assignment module was 
chosen to be used. The dynamic assignment automatically determines inlet flows and routing 
information based on a user-supplied O-D matrix. The routes, or traffic assignments, are generated 
by the dynamic assignment module by assigning a cost to every route available to each O-D pair 
and then choosing the route with the minimum cost. For a large network, it is often very difficult 
and time-consuming to manually define all the route choices from origin to the destination because 
the route choice of drivers depends on signal control and traffic conditions. It is therefore 
imperative to model how drivers will choose from a set of possible routes based on a time-
dependent origin-destination demand. Dynamic assignment in VISSIM is based on a repetitive 
simulation, and drivers are made to make their route decisions based on the travel cost they 
experienced in the previous simulation [74]. The iterative process is repeated until convergence is 
reached. In this study, firstly, nodes were defined for all intersection and network boundaries 
making sure that the attribute “use for dynamic assignment” is checked. Zones, as specified in the 
OD matrix, were defined and parking lots were defined at network boundaries of every link in the 
network. Estimated Origin-Destination Matrix was coded, and the parameters defined based on 
vehicle compositions and class. 

5.5.8. Modeling Road Diet 
The road diet was configured in VISSIM by realigning the lanes for vehicular traffic to fit within 
a narrower right of way that would allow for the installation of bicycle lanes on both sides of 51st 

Avenue North. Since VISSIM does not have a straightforward way to model a shared left turn 
lane, the lane alignment at each intersection has been carefully constructed so that left turning 
vehicles from 51st Avenue North and from the side streets interact in a realistic way. Two links 
with overlapping lanes running in opposite directions were developed. Then the priority rules and 
the lane change distances were assigned to the left turn connectors. The priority rules kept vehicles 
from driving through each other in opposite directions and the lane change distance settings kept 
vehicles from getting stuck and from excessive lane-change crash events (drivers choose and begin 
to seek desired destination lanes as they entered the network). The simulated network with the 
road diet was well configured to recreate the vehicular interactions that would result from a shared 
left turn lane and, most importantly, to exhibit the expected capacity for vehicular traffic in the 
corridor. 

Morning peak times were used for this study. The next step was to encode the signal control 
parameters. The NEMA (the National Electrical Manufacturers Association) style controller model 
included with VISSIM was used for all intersections in this study. Detector locations were defined 
for intersections with full actuated control strategies. The information on detector locations and 
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phase assignment were available from the signal intersections files which were provided by the 
Metropolitan Government of Nashville and Davidson County [75]. However, the information on 
the lengths of detectors was not available, and therefore, the detectors were assumed to have a 
length of 30ft and were placed 32.679ft from before the stop line. For all the intersections, the 
priority rules were implemented for all the permissive left turns and the reduced speed areas were 
added for turning movements. A priority rule is defined through three parameters: minimum gap 
size, minimum headway, and maximum speed. The minimum headway of the priority rule was 
calibrated to mimic the performance of the crossing vehicles in the presence of slow-moving or 
queuing traffic on the main road. The default parameter suggested by PTV VISSIM for this 
parameter is 16.4 ft. For all intersections in this study, the minimum headway was changed to 
200ft. 

In the reduced speed areas, each vehicle made maintained near constant speed. The location, speed 
distribution, and deceleration rate of reduced speed areas have been determined using field 
observation. Next speed profiles, vehicle-type characteristics, and traffic composition configured 
for each intersection and the corridor. The traffic composition was mainly composed of cars, heavy 
good vehicles, and buses. The percentage of cars and other vehicles (HGV and buses) observed 
in the peak hour were 92% and 8% respectively. The desired speed profile was found using test 
vehicles to range from 30mph to 30mph, 35 mph (85th percentile speed). 

Microsimulation models were utilized to compare the operational and safety performance of the 
road diet (3-lane section) due to the presence of the stopped transit. Different volume scenarios 
were developed. The technique was to convert crash models were expressed in units of ADT to 
traffic volumes in the simulation are expressed in the unit of veh/hr. ADT was converted to Hourly 
Volume (HV) by using the K factor as can be seen in equation 2. 

!"ADT= # 
(2) 

Where: 

ADT is the average daily traffic volume 

HV is the hourly volume 

K is the conversion factor 

The value of K varies with the area type. For this research, the value of K of 0.093 for the urban 
area was used as recommended in the Highway Safety Manual [33]. 

The study segment was modelled in VISSIM and tested for realistic vehicle behaviors. After 
running the VISSIM model several times with different random seeds for the period of 3900s 
(including 300s warm-up period), the TRJ files were imported into SSAM application to identify 
traffic conflicts and the corresponding surrogate safety measures. SSAM was configured to use its 
default values conflict identification thresholds. Namely, the (default) TTC and PET values used 
were 1.5 seconds (1.5s in this research, as suggested for urban areas [71]) and 5.0 seconds, 
respectively. 
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5.5.9. Modelling Transit Operations 
Transit vehicles modelling was conducted based on empirical observations from the site. The 
effect of blockage lanes due to stopped transit vehicles were observed in the field observations and 
microsimulation confirms the relationship between the location of the blockage and the effect on 
capacity and delay. Live video feeds collected from the site in Nashville for these complete streets 
were used to observe the operation of the bus. The videos were recorded from the camera mounted 
at different locations along the corridor for the duration of at least six hours in several consecutive 
days. Following are a number of qualitative observations made on the transit vehicles operating 
on road diets: (1) Transit buses stopping for passengers at stops which are distributed along the 
length of the corridor, and (2) The blocked travel lane has different effects on traffic moving; some 
drivers wait behind the buses while others merge into the shared lane to get around the transit 
vehicles before returning to the desired lane. 

Transit vehicles operating on road diets have a negative impact on traffic safety as previously 
elaborated; the magnitude has not been systematically quantified. A large number of conflicts were 
observed in the model as the number of cars queued up behind the stopped buses waiting to 
perform a passing maneuver increased. These conflicts were recorded by SSAM as either rear end 
or lane-changing maneuvers. The increase of rear-end conflicts increased due to vehicle stops, this 
increase in simulated crashes was due to queued cars changing lanes abruptly.  The diagram 
(Figure 5.5) attached indicates the screenshot of the simulation animation, in which from the visual 
inspection of the lane changing behavior, a trailing vehicle (highlighted in the green box) drives 
through a transit bus that was stopped in designated bus stops through a lane-change.  The similar 
situation may occur for the case of vehicles stopped on a red light with other vehicles approaching.  
One vehicle may fail to recognize the presence of another vehicle and partially passes through it.  
SSAM also considers this event as a crash.  

Simulations were run for a baseline case of road diet in which no blockages occurred. Then, a 
series of simulations were run to evaluate the effect of a blocked lane associated with a stopped 
bus vehicle at distances from 0 to 175 feet from the intersection stop line. 10 replications were 
conducted for a base case condition with no blockage and then for cases in which a transit bus 
stopped at 0, 25, 50, 75, 100, 125, 150, and 175 feet from the intersection stop bar. Fitzpatrick [76] 
also considered different alternatives for locations include near-side, far-side, or midblock 
locations, and curbside or bus bay designs 

As the effect of a bus stop on other vehicular traffic depends on bus dwell time, dwell times of 
10s, 20s, and 30s were assumed while comparing the model for different flows [77].  For each of 
the dwell times considered, traffic flow was increased in steps until the capacity flow of the road 
diet approach was obtained. Assume all buses in the stream stopping at the stop. The effects of bus 
dwell times at a bus bay/curbside stop alternative were also evaluated. 
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Figure 0.5. Transit Operations on a road diet 

 

5.5.10. Model Calibration and Validation 
In order to produce a microsimulation model faithful to traffic conditions observed on the road 
diet, traffic patterns and driver behavior were replicated using VISSIM microsimulation software. 
Driver behavior in VISSIM is composed of a car following, lane change, lateral and signal 
behavior model. The following were parameters were considered for the calibration: traffic 
assignment (OD), speed distribution (Average speed of cars, average speed of trucks , and average 
speed of buses), reduced speed area, conflict areas parameters, and driver behavior elements. Also, 
the speed of all vehicles crossing the curbside bus stop, dwell time distribution (mean, S.D) were 
measured in the model and matched the field values. After the calibration of the model, the model 
was validated. The first step of validation is visualization [78], checking the operation of vehicles 
in road diets and bus movements and comparing to the field. Then, the model was again validated 
using travel times collected on different weekdays using test vehicles equipped with GPS. It was 
noticed that the average difference in travel times in the VISSIM model from the field was below 
15% indicating a reasonable matching between the simulated and observed travel times. Generally, 
all validation results for the two directions (NB and SB) were satisfactory with minimal errors. It 
was concluded that the model was well calibrated and validated. 
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5.6.Evaluation 
5.6.1. Lane Changing Evaluation 
Lane changing refers to the process where a vehicle traverses to an adjacent lane from its present 
lane. Lane changing is a significant parameter when modelling driver behavior using microscopic 
traffic simulation [79]. Ramanajam [80] categorized lane changes into two (2) main groups based 
on what triggers the process including Mandatory lane Changes (Necessary lane changes) and 
Discretionary Lane Changes (Free lane change). Mandatory Lane Changes (MLC), which 
constitutes of lane changes that are imposed by a lane drop, incident or because the vehicle is 
approaching the exit of a junction while Discretionary Lane Changes (DLC) describes lane 
changes that are performed due to a driver’s desire of traveling by higher speed or with more space. 
The DLC model is described by Mathew as a three-step process initiated with the decision whether 
to consider a lane change or nor. Subsequently, the vehicle must check if the desired lane change 
is feasible, and lastly perform a gap acceptance control.  

These lane changing behaviors are implemented in Vissim software. There are two car-following 
models available in VISSIM: Wiedemann 74 and Wiedemann 99. The lane changing behavior in 
Vissim is based on a model developed by Willman, 1978 [73].  In order to model lane changing 
decision in Vissim, Gao [81], as well as Fellendorf [82], argues that the following set of 
hierarchical questions have to be evaluated: (1) Does the driver desire to change lane? (2) Are the 
driving conditions improved by a change to the adjacent lane? (3) Is it feasible to safely perform 
the desired lane change? The lane changes in Vissim depend on the distance to the emergency stop 
position of the next connector route. PTV AG [81] points out that no matter which type of lane 
change that is being performed, the initial step when a vehicle wishes to change lane in VISSIM 
is to find a “suitable time gap” (headway) in the destination flow. The size of this time gap depends 
on the speed of the own vehicle and the trailing vehicle in the targeted lane. The full set parameters 
for modeling lane changing behavior in Vissim were studied and adjusted.   

To reduce the effect of unusual lane-changing behavior, the length of each approach to the 
intersection were extended to give more time for vehicles to decide their downstream paths. Also, 
driver behavior parameters were adjusted to allow additional time for the minimum lateral 
clearance. 0.5 seconds was added for the minimal lateral clearance.  The essence of this adjustment 
is to reduce simulated crashes resulting from lane changes.  

5.6.2. Safety evaluation 
Surrogate safety evaluation is a widely accepted alternative to crash data analysis for engineering 
applications [83]. Following the randomness and rareness of crash occurrence, statistics can be 
applied to relate surrogate safety measures with frequency and severity of crashes even before the 
occurrence of the crashes. Traffic conflict is the commonly used surrogate safety measure which 
is defined as a situation where two or more vehicles will collide if their movements remain 
unchanged. A number of conflicts that occur, type and severity of the conflicts can be used as an 
indicator of traffic safety [84]. In this study, only rear-end and angle conflicts were analyzed 
because they are the most prevalent at road diets and can be caused by hard-braking and abrupt 
changing of lanes at the middle-shared lane by queued cars due to bus blockage at the stops.  
According to the data collected from the Tennessee E-TRIMS database [85] of the road diet 
installed, 38 % of crashes resulted were angle crashes while 21% came from rear-end crashes.  

Specific thresholds are applied to measurable traffic indicators such as time to collision (TTC) and 
post-encroachment time (PET) in order to obtain working definitions of traffic conflicts. The 
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Surrogate Safety Assessment Model (SSAM), a Federal Highway Administration software, 
enables identification of the traffic conflicts by statistical analysis of the vehicle trajectory file 
which is generated from microscopic simulations. SSAM provides a number of indicators of 
conflicts based on the trajectory files obtained from the scenario run by microscopic simulation 
software. In this study, the results from SSAM proved to be useful due to several reasons. The 
study specifically focused on the safety evaluation of vehicles that are coming to a stop behind the 
stopped buses on travel lanes. SSAM provided a vast amount of conflict data that was filtered to 
obtain data that was required for this study. Traffic conflicts occur at different locations due to 
several different reasons.  

VISSIM traffic flow model is a stochastic, time step based, microscopic model that treats driver-
vehicle units as basic entities. It uses Wiedemann’s traffic flow model which is based on the 
assumption that there are basically four different driving states for a driver namely free driving, 
approaching, following and braking [73]. The braking state occurs when a driver applies medium 
to high deceleration rates if the distance to the preceding vehicle falls below the desired safety 
distance. This happens if the driver of the preceding vehicle abruptly changes his speed or the 
driver of a third vehicle changes lane to squeeze in between two vehicles. Further, VISSIM 
provides a number of interaction states which can be used to check the driving states of the vehicles 
in the network. Closeup state describes vehicles closing up to a stationary vehicle in front or 
hindrance, for example, signal heads, stop sign, priority rule, and conflict area. Since the study was 
conducted on a bus stops at designated distances from the signalized intersection approach of a 
road diet, the close-up state only could result only on a stationary transit vehicle in front or 
hindrance due to signal heads. 

Location with many conflicts exceeding the thresholds for TTC, PET, and DR and are of high 
severity of DeltaS and MaxS were studied for the safety implications. For the low values of DeltaS 
and MaxS, the accidents are classified as Property Damage only (PDO). In this study, locations 
with conflicts that resulted in high resulting potential severity were highly favored regardless of 
the number of conflicts. After having the SSAM conflicts, debugging of the results is of crucial 
importance. Overlapping vehicles in TRJ output identified as conflicts with TTC=0 (crashes) were 
removed before statistical calculations were performed. These are virtual crashes where the logic 
in the simulation model does not accurately and completely represent the physical possibility of a 
particular maneuver  

 

5.7.Results And Discussion 
5.7.1. Influence of Bus Stops 
The results of the simulation of traffic at curbside stops on an 11ft wide road are shown in Fig. 5.6. 
The figure shows the average traffic speed near the bus stop, for various bus dwell times. It can be 
seen that up to a traffic flow level of about 600 vehicles per hour, the effects of dwell times of 10, 
20, and 30 s duration, are nearly the same. Comparisons of the effects of bus dwell times at 
curbside stop for non-stop transit vehicle, at various flow levels on an 11ft wide road lane of a road 
diet, can be depicted in Fig. 5. By referring to the same figure, it can be seen that the presence of 
bus for 10, 20 and 30 s dwell times have almost 9.5%, 12%, and 20% effect on traffic speed 
reductions when 300 veh/hr flow is considered. Fig. 5.7 shows a comparison of reduction in speed 
of traffic on an 11ft wide road lane of a road diet due to curbside stops and bus bays for a mean of 
30s with a standard deviation of 5 s  dwell time case. It can be seen that a bus bay stop with the 
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stated bus dwell time, causes an approximate 8% speed reduction to traffic at a flow level of about 
1400 vph. 

 

 
Figure 0.6. Effect of bus dwell time at a bus bay on 11ft wide road of a road diet 

 

 
Figure 0.7. Effect of bus dwell time at a bus bay on 11ft wide road of a road diet 

 

5.7.2. Effect of Transit vehicle on Traffic Safety of the road diet 
There are two notable conflict types associated with transit vehicle on road diets: rear-end 
conflicts, which can be the result of vehicles traveling in the inside through lane behind a stopping 
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or stopped left-turning vehicle. Therefore, a vehicle must brake in order to avoid hitting another 
vehicle from behind; Crossing conflicts occur during lane-change maneuver which poses a risk of 
collision between two vehicles. An analysis of the trajectories from bust stop locations at 0, 25, 
50, 75, 100, 125, 150, and 175 feet from the intersection shows how the number of conflicts is 
affected by the presence and location of a curbside stop on the link of a road diet. Figure 5.8 shows 
that the number of rear-end conflicts is significantly greater when the bus stop is at the intersection. 
The conflicts keep decreasing as the blockage moves away from the intersection until there is no 
statistically significant difference at approximately 100 feet from the intersection. This distance 
corresponds to the length of the queue. When the blockage does not interact with the queue of 
vehicles at the intersection, there appears to be no significant increase in rear-end conflicts. This 
analysis implies that rear-end crashes are more likely only when transit vehicles stop near the 
intersection. The same simulation cases were also analyzed for crossing conflicts. Since the 
operation of a bus blocks a lane of traffic on a road diet, any vehicles traveling in that lane attempts 
to illegally maneuver in order to proceed along the route. The relationship between the number of 
crossing conflicts and the location of the curb stop location is shown in Figure 5.9. Repeatedly, 
there are more conflicts the closer the curb stop is to the intersection on a road diet. In this case, 
the conflicts decrease linearly with distance until about 100 feet. When the bus curbside stop 
location is near the intersection, the lane changes from behind the transit vehicle interact more 
with the vehicles attempt to make left turns to the access points using the shared lane.  

 

 

 

 
Figure 0.8. Effect of a bus curb stop location on the number of rear-end conflicts 
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Figure 0.9. Effects of a bus curb stop location on the number of crossing conflicts 

 

5.8.Conclusions 
Road diets can decrease lane crossing distance and reduce vehicle speeds through converting an 
existing four-lane, undivided highway to two through lanes and a center, two-way left turn lane 
(TWLTL). This design allows left-turning vehicles to exit the traffic stream while waiting for a 
gap to complete their turn and frees up space that can be relocated to other uses. One of the uses 
is for transit lanes. Although it is commonly noted in the literature that transit vehicles on a road 
diet have a negative impact on traffic safety and operation, the magnitude has not been 
systematically quantified. These buses or freight vehicles dwelling at loading areas near the 
intersection of a road diet temporarily block car traffic to provide bus priority. For the purpose of 
estimating effective traffic management strategies at critical locations on a road diet, the effects of 
these obstructions were recognized or accounted for in this study. In this study, a microscopic 
simulation model developed to replicate the driving behavior of traffic on urban road diets roads 
has been used to analyze the influence of bus stops on traffic flow and safety. The impacts of safety 
were assessed using surrogate measures of safety (SSAM). 

The results indicate that presence of a bus stops for 10, 20 and 30 s dwell times have almost 9.5%, 
12%, and 20% effect on traffic speed reductions when 300 veh/hr flow is considered. Also, up to 
the traffic flow level of about 600 vehicles per hour, the effects of dwell times of 10, 20, and 30 s 
duration, are nearly the same. Additionally,  a comparison of reduction in speed of traffic on an 
11ft wide road lane of a road diet due to curbside stops and bus bays for a mean of 30 s with a 
standard deviation of 5 s  dwell time case was conducted. Results show that a bus bay stop with 
the stated bus dwell time causes an approximate 8% speed reduction to traffic at a flow level of 
about 1400 vph. 

0

5

10

15

20

25

30

35

0 25 50 75 100 125 150 175

Cr
os

sin
g 

co
nf

lic
ts 

pe
r H

ou
r

Distance of Delivery from Intersection (ft)



  

46 
 

For safety analysis, an analysis of the trajectories from bust stop locations at 0, 25, 50, 75, 100, 
125, 150, and 175 feet from the intersection shows how the number of conflicts is affected by the 
presence and location of a curbside stop on the link of a road diet. the number of rear-end conflicts 
is significantly greater when the bus stop is at the intersection. The conflicts appear to as the 
blockage moves away from the intersection until there was no statistically significant difference 
at approximately 100 feet from the intersection. For crossing conflicts, again, there were more 
conflicts the closer the curb stop is to the intersection on a road diet. In this case, the conflicts 
decrease linearly with distance until about 100 feet. 
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